Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels.

نویسندگان

  • Y Li-Smerin
  • K J Swartz
چکیده

Protein toxins from venomous animals exhibit remarkably specific and selective interactions with a wide variety of ion channels. Hanatoxin and grammotoxin are two related protein toxins found in the venom of the Chilean Rose Tarantula, Phrixotrichus spatulata. Hanatoxin inhibits voltage-gated K+ channels and grammotoxin inhibits voltage-gated Ca2+ channels. Both toxins inhibit their respective channels by interfering with normal operation of the voltage-dependent gating mechanism. The sequence homology of hanatoxin and grammotoxin, as well as their similar mechanism of action, raises the possibility that they interact with the same region of voltage-gated Ca2+ and K+ channels. Here, we show that each toxin can interact with both voltage-gated Ca2+ and K+ channels and modify channel gating. Moreover, mutagenesis of voltage-gated K+ channels suggests that hanatoxin and grammotoxin recognize the same structural motif. We propose that these toxins recognize a voltage-sensing domain or module present in voltage-gated ion channels and that this domain has a highly conserved three-dimensional structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hot Spot for the Interaction of Gating Modifier Toxins with Voltage-Dependent Ion Channels

The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (on...

متن کامل

Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltag...

متن کامل

Voltage-gated ion channels and gating modifier toxins.

Voltage-gated sodium, calcium, and potassium channels generate electrical signals required for action potential generation and conduction and are the molecular targets for a broad range of potent neurotoxins. These channels are built on a common structural motif containing six transmembrane segments and a pore loop. Their pores are formed by the S5/S6 segments and the pore loop between them, an...

متن کامل

Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand t...

متن کامل

Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier.

The pore and gate regions of voltage-gated cation channels have been often targeted with drugs acting as channel modulators. In contrast, the voltage-sensing domain (VSD) was practically not exploited for therapeutic purposes, although it is the target of various toxins. We recently designed unique diphenylamine carboxylates that are powerful Kv7.2 voltage-gated K(+) channel openers or blockers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 15  شماره 

صفحات  -

تاریخ انتشار 1998